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Turbulent jets in ducted streams 

By PHILIP G. HILL 
Department of Mechanical Engineering, Massachusetts Institute of Technology 

(Received 2 April 1964 and in revised form 11 September 1964) 

An attempt has been made to predict the mean velocity field of turbulent jets 
immersed in secondary streams confined by constant-area ducts. The calcula- 
tions have employed empirical data derived solely from the turbulent free jet. 
The conditions under which ducted jets may be considered approximately self- 
preserving have been examined by comparison of results of momentum-integral 
calculations with data from various sources on two-dimensional and axi- 
symmetric jets immersed in secondary streams of constant velocity. For flows 
in which confining walls have significant effects, it  is shown that the velocity 
field may be determined fairly well from free-jet data using the assumption of 
approximate self-preservation. Before the jet spreads to the wall, both the mean- 
velocity and turbulent shear stress are assumed self-preserving. Afterward 0111~ 
the shear stress is subject to this condition. Improvement of the methods used 
appears mainly to require a better model of the zone of recirculation. 

~ - 
1. Introduction 

The experimental behaviour of the free turbulent jet, i.e. one which issues into 
a large stationary body of the same fluid, is now quite well known (see, for 
example, Townsend 1956, Hinze 1959, Schlichting 1958). Numerous measure- 
ments have been made of mean and fluctuating velocities, temperatures and con- 
centrations of chemical species. Much less well known is the behaviour of the jet 
immersed in a secondary stream, especially when the effects of confining walls are 
important. These effects are particularly significant in ejectors and certain 
combustors in which the flame is stabilized by a recirculating flow of combustion 
products. 

The two-dimensional, or plane, jet immersed in a secondary stream of approxi- 
mately uniform and constant velocity has been studied experimentally by 
Weinstein, Osterle & Forstall (1956). His results, for various ratios of secondary 
and jet velocities, have been shown by Spalding (1958) to be essentially functions 
of a single independent variable. Ferguson (1949) has measured the mean 
velocity field of a two-dimensional jet immersed in a duct. Curtet (1958) has also 
reported measurements for this case, and Craya & Curtet (1  955) have developed 
a method of calculating the flow field assuming the external stream to be a 
potential flow. 

Experimental data on the axisymmetric jet in an external stream of approxi- 
mately constant velocity have been provided by Forstall & Shapiro (1950), 
Landis & Shapiro (1951) and Pabst (1944). Using Prandtl’s mixing length theory, 
Squire & Trouncer (1944) and Szablewski (1946) have developed momentum 
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integral equations with which to calculate the flow field. Considerable data has 
been provided by Hembold, Luessen & Heinrich (1954) and Becker, Hottel & 
Williams (1962) for confined axisyrnmetric flows on which the walls exert a 
dominating influence. 

Little experimental information on turbulent shear stresses is available for jet 
flows other than the free jet. Extensive measurements on the free jet have shown 
that this flow is closely self-preserving. The measurements of Corrsin on the 
axisymmetric free jet, for example, have shown that the mean velocity distribu- 
tion becomes nearly self-preserving within eight diameters from the nozzle. 
From this, and the observation that the jet spreading is very nearly linear with 

Nozzle 

FIUURE 1. Flow rdgimes. 

axial distance, it  may be deduced that the turbulent shear stress distribution is 
also closely self-preserving. Thus, in contrast with other jet flows, the free-jet 
velocity and shear stress distributions are well known. The purpose of this paper 
is to show that, under certain conditions, the mean velocity field of the ducted 
turbulent jet may be predicted quite well from free-jet data, using no other 
empirical information. 

Figure 1 illustrates the behaviour of a jet in an axisymmetric duct of uniform 
cross-sectional area. Ignoring the effects of the wall boundary layers, at  least 
four idealized regions of flow may be identified. 

(A) A transition region in which the jet velocity distribution develops a nearly 
constant shape. In  the flows of interest herein this region is short (of the order of 
eight to twenty nozzle diameters). 

(B) A region in which the external stream may be considered a potential flow 
and the jet velocity and shear stress distributions may be considered approxi- 
mately self-preserving. As the jet spreads i t  entrains fluid from the external 
stream rapidly enough to reduce the free-stream velocity and thus a positive axial 
pressure gradient is established. 

(C) A possible region of recirculation. If the jet entrains all the free-stream 
fluid before spreading to the wall, a zone of recirculating flow will be established. 
Experimentally it has been found that even in this region the jet velocity profile 
is still of approximately constant shape. The flow outside the jet can no longer be 
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considered potential because it consists of fluid recirculating through the jet 
itself. This zone may, to a f i s t  approximation, be considered uniform in pressure 
up to the point at which the jet shear layer approaches the wall. 

(D) A region downstream of the point at which the jet attaches to the wall. 
Considerable pressure gradients may be established in this zone and the flow can 
no longer be considered even approximately self-preserving (although the eddy 
viscosity distribution retains approximate similarity). 

Self preservation 

The main terms of the Reynolds equations for free turbulent shear flow are, at  
sufficiently high Reynolds numbers, 

au au ia(uvyi) i a p  
ax ay ya ay p a x  

U-+ V-+-7----- +-- = 0 (i = 0, l), 

in which P = p +ps and the symbols are defined as follows: 
The index i is zero for two-dimensional flow and one for axisymmetric flow. 

The x- and y-directions are parallel and normal, respectively, to the jet axis. 
The mean velocities in the x- and y-directions are U and V and the corresponding 
fluctuating velocities are u and v. The static pressure is denoted by P. The 

r = -puv. Reynolds shear stress is 

When the stream outside the jet may be considered a potential flow the pressure 

- 

gradient dP/dx is given by 
l a p  TT dun 

- -u  -", p d x -  O ax 
assuming (2 - 3) < u,. 

distributions may be expressed as 
If the jet flow is assumed to be self-preserving then the velocity and shear 

(U- V,,/q =f(Y/4, (2) 

71PU5 = d Y / &  (3) 

As illustrated in figure 2, U, is the free-stream velocity, q the difference between 
jet maximum velocity and free-stream velocity, and 6 is the distance from the 
centre-line of the jet to its edge. Another jet thickness b, the width of the jet 
between points at which the velocity is midway between U, and (U, + V,), will be 
used later. 

The continuity condition is 

a(uyi)px+a(vyi)/ay = o (i = o, i ) .  
Defining h = U 0 / q  and 7 = y/6, and substituting these similarity expressions 
and the continuityrelation in equation (1) the result may be expressed in the form 

11-2 
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can be considered universal functions of 7 are 
Since A, L$ and S are functions of x the only conditions under which f and g 

h < l  or A + > .  

For the case A < 1 it may be shown that even if U ,  is variable, self-preservation 
of the flow implies 

S E X  (i = O , l ) ,  

qcc x-4 (i = O),  

x-1 (i = l), 

where x is the distance from the virtual origin. 

I urn 

S r 
b 

7 

FIGURE 2. Nomenclature for velocity distribution. 

For the other case, h 9 1, it  may be shown (e.g. Townsend 1956) that if U, is 
constant, 

S E X 3  (i = O), 

E X +  (i = l) ,  

qccx-+ (i = O),  

and Ex-% (i = 1). 

2. Free jet ( A  = 0)  

Figure 3 shows data on the velocity distribution of the axisymmetric free 
turbulent jet and a mean curve used in calculations to be described herein. 
Figure 4 shows data on the rate of spreading of the free jet; it  becomes linear 
quite close to the nozzle. Thus, for the case h = 0, equation ( 5 )  is satisfied to the 
accuracy of experimental data and it may be concluded that equations (2) and (3) 
are legitimate assumptions. 

The conditions under which equations ( 3 )  and (3) (withf(7) and g(7) evaluated 
from free-jet data) are satisfactory for h =/= 0 can be examined by comparing the 
results of calculations, based on these assumptions, on immersed jets with 
(i) data on jets in constant velocity streams, (ii) data on jets in ducted streams. 
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3. Jets in constant velocity streams 
Momentum integral equations 

The momentum thickness 8 is defined by 

u;e(l+i) = 2ni u( u - uo)yi ay. 
J O r n  

If the velocity distribution conforms to equation (2) then 

If the pressure is uniform, 0 will be constant for the whole flow, regardless of 
whether self-preservation applies. For a rectangular velocity profile in the exit 
plane of the nozzle, equation (6) may be written 

in which d is the diameter of the nozzle and ho is the velocity ratio at its exit plane. 
If the flow is held to be approximately self-preserving and f(q) is known, 

equation (6) relates local values of h and 6. Another relationship is needed to 
determine the axial variation of these two quantities. It may be obtained in 
several ways. 

The momentum equation could be integrated across a zone whose width is only 
half the distance between the edge and the centre-line of the jet. This would 
require evaluation of the turbulent shear stress on one surface of the arbitrary 
control volume. Such a method has been adopted by Squire & Trouncer (1944) 
who used the mixing-length theory to relate this shear stress to the local velocity 
gradient. 

Another method, used by Truckenbrodt (see Schlichting 1958) for boundary 
layers, consists of multiplying the momentum equation by U and integrating 
across the whole zone to form an energy integral equation which contains an 
integral of the shear stress. 

The method used herein consists of multiplying the momentum equation by 
yl+i and then integrating across the whole zone to form a moment-of-momentum 
integral equation which contains the integral of the shear stress distribution 
mentioned previously. It may be noted that Tetervin & Lin (1951) have obtained 
relations for the general case in which the momentum equation is multiplied by 
Ump (m and n being integers) and integrated across the whole layer. 

Curtet (1958) has used a more complex procedure for obtaining integral 
equations. First he integrates the momentum equation between the centre-line 
and a general value of 7. Then he approximates the result and multiplies it by 
a certain function of 7 before integrating across the whole layer. 

The choice between the methods used by Squire & Trouncer, andTruckenbrodt, 
and the present one is arbitrary in the sense that if the exact solution were known 
i t  must satisfy all three equations. Fortunately, experience indicates that the 
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choice between them is not very important. For example, it may be shown that 
if identical velocity profiles and the mixing-length theory are assumed in order 
to calculate the rate of spreading of the turbulent wake, the difference between 
the Squire & Trouncer and present methods in the prediction of spreading rate 
is only a few per cent. 

The present method has the advantage over that of Squire & Trouncer of not 
requiring the choice of an arbitrary limit for the second integral of the momentum 
equation. Also, it does not require the use of a phenomenological theory to relate 
the shear stress at that boundary to the local velocity gradient. 

It may at first appear that multiplying the momentum equation by yI3-i and 
then integrating across the whole zone provides an effective weighting factor for 
eonditionsiri the outer part of the jet. However, it may be shown from subsequent 
equations that an identical result is obtained by multiplying by (6- y)yi before 
integrating. The choice of axis around which the moments of momentum and 
pressure forces are summed has no effect on the solution, as is well known for 
problems involving only static forces. 

Proceeding then to form a moment-of-momentum integral equation by 
multiplying equation (4) by yl+i and integrating across the entire jet, the result 
is (for constant U,) 

in which 

permits equation (6) to be written 

Equations (7) and (8) show that, as long as the flow is self-preserving and U, is 
constant, the velocity ratio h = U o / q  and the thickness ratio 6/0 both depend 
only on x/0. Spalding has deduced this dependence by a more general argument. 
Hypothesizing that the jet has essentially 'forgotten ' the upstream conditions, 
its local rate of change depends only on local conditions. He postulated that, for 
example, 

in which is the excess momentum of the jet. For the axisymmetric case 
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Using dimensional analysis, and recognizing that U, and M are constants, allows 
this relationship to be written in the form 

in which 

Thus h = h(x/O). 
Equations (7) and (8) will now be combined for both axisymmetric and two- 

dimensional (plane) jets. Based on free-jet data and the self-preservation 
assumption, the flow will be calculated for general values of A. The results will 
then be compared with experimental data to see under what conditions the 
method appears to be reliable. 

Axisymmetric jet  in u constant velocity stream 

Using equations ( 8 )  to eliminate S from equation (7) for i = 1 yields an expression 
which, when integrated, becomes 

in which A = h+$51/$41 and Cl is a constant of integration. The integrals 
$11, . . . $51, which depend only on the velocity distribution, have already been 
defined as well as the shear integral $l. The momentum thickness 8 may be 
obtained from conditions a t  the nozzle exit, 

in which d is the nozzle diameter and A, the initial velocity ratio. 
Instead of assuming the velocity distribution f(7) to be a Gaussian or other 

simple function derived from the application of the phenomenological theories to 
jets, the integrals q511, . . . $51 may be evaluated directly from free-jet velocity 
measurements. From the mean curve of figure 3 the following values were 
obtained. 

$11 = 0.0378, $21 = 0.0124, $31 = 0.0338, 

$41 = 0.0950, $51 = 0,0445. 

The shear stress integral $1 may be determined from free-jet data as follows. 
For h = 0 and i = 1 the conservation of momentum requires U5S2 = const., or 

1 d q -  I d 8  
q. dx 6dx'  
-- - --- 

and equation (7) with the use of this relation becomes 

$1 = ($31 - $21) (dS/dx)A=O' 

Figure 4 shows data for the spreading of the free jet. The location of the virtuaI 
origin is close indeed to the exit plane of the nozzle. The jet width b used in 
figure 4 is the diameter between points at which the fluid velocity is half the 
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maximum velocity. Using the mean velocity curve of figure 3, 6 w 1.44b. Then 
using figure 4 to obtain dbldx M 0.170 the above relationship yields 

$1 = 0.00255. 

As an independent check $l may be used to compute free-jet entrainment 
which Ricou & Spalding (1961) have measured accurately and reported in the 
form ml/x(Mlp)* = 0.282, 

in which m, is the mass flux of the jet and Ml the momentum flux. If the jet is 
assumed self-preserving 

~ m1 - __ (2+ 6 $41 

X ( J ! l P ) *  - dl 
or 

Using the values of $1, $21, &, $41, $51 already given the result is 

m,/x(Nlp)4 = 0.276, 

which is close indeed to the Ricou & Spalding value. 
the constant of integration Cl in equa- 

tion (9) may be determined by the condition that at the virtual origin x = 0 and 
h = 0. After evaluating coefficients equation (9) becomes 

Having evaluated &, . . . , $51 and 

xle = 6.39~3 + 5 . 3 8 ~ 4  + 1.76~-4 - 8-30, (10) 

Since h is thus given as a function of xj0 the thickness ratio 610 or b/0 can 

in which A = h + 0.468. 

similarly be related to x/0 by applying equation (8) for i = 1 : 

a/@ = WWkL + #5d$ 

Figures (5) and (6) show the predictions of h and bje which can be made in 
this way. 

Experimental data 

Figures 5 and 6 also show the data reported by Landis & Shapiro (1951) and 
Pabst (1944) for axisymmetric jets in a moving external stream. Both the 
Landis-Shapiro and Pabst experiments were conducted with heated jet streams. 
To take into account the first-order effects of density difference between jet and 
secondary streams the momentum thickness is modified to read 

in which pj/po is the ratio of jet density to secondary stream density. The Mach 
number of the Pabst jet was approximately 0.84. 

The virtual origin of the Pabst jet was assumed to be in the exit plane of the 
jet since detailed measurements showed the velocity distributions to be quite 
close to rectangular at that plane. The virtual origin of the Landis & Shapiro jets 
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FIGURE 5. Axisymmetric jets in moving streams. A, (Landis-Shapiro): x ,  0.333; 
A, 0.852; 0, 0; 0, 0.0562 (Pabst); 0, 0.352; +, 0.885; -, theoretical; ---, U,ac z-l, 

has been determined in the following way. Figure 4 indicates that the length of 
the potential core for the free jets measured by Corrsin, Corrsin & Uberoi and 
Hinze & Van der Hegge Zijnen (see Townsend 1956) is about eight diameters 
from the nozzle exit plane. On the other hand, E’orstall & Shapiro (1960) 
report (from measurements made on the same apparatus, and consistent with 
those of Landis & Shapiro) that the core length is given by 

X l d  = 4-t 12p, 
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in which p is the ratio of secondary to jet maximum velocity. This predicts that 
for the free-jet case ( A  = p = 0) the core length is only four diameters. The 
discrepancy between this value and the one obtained from figure 4 could be due 
to the nozzle exit velocity profile being considerably more rounded in one case 
than the other, and suggests that the virtual origin should be shifted four 
diameters upstream of the nozzle exit plane as has been done for the Landis- 
Shapiro data shown in figures 5 and 6 .  In  the absence of contrary information, 
the virtual origin of the jet will be assumed independent of the velocity ratio A. 

0 

FIGURE 6. Axisymmetric jets in moving streams. h, (Landis-Shapiro): x ,  0.333; A, 
0-852; 0,  1.0; -, theoretical, 

Figures 5 and 6 reveal that on the whole the assumption of approximate self- 
preservation leads to quite a good prediction of the general case from free-jet 
data. Figure 5 indicates that for values of A exceeding unity the prediction begins 
to deviate from the measured data. This point will be discussed further after 
corresponding results for the two-dimensional or plane jet have been examined. 
Figures 5 and 6 also indicate increasing discrepancy between the results of calcula- 
tion and equations (5) which are the consequences of self-preservation. Thus, 
above a value of unity the flow cannot be considered even approximately 
self-preserving. 

Two-dimensional (plane) jet in a constant-velocity stream 

In the same way as for the axisymmetric jet the behaviour of the two-dimensional 
(plane) jet may be calculated as shown in the Appendix. Figures 7 and 8 show 
the results of these calculations and the data of Weinstein for the two-dimensional 
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0.1 1 10 100 

X I 0  

FIGURE 7. Plane jets in moving streams. 
A, (Weinstein): x ,  0.5; A, 1;  0, 2;  -, theoretical, Old = (&+l)/A2,. 

z/e 

FIGURE 8. Plane jets in moving streams. 
A. (Weinstein): x ,  0.5; A, 1; 0, 2; -, theoretical, Old = (&+ l ) /Ai .  
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jet in a stream of constant velocity. It may be seen that the downstream flow is 
predicted very well indeed for low velocity ratios A, though at higher values of 
h a distinct deviation becomes apparent. For the plane jet U, oc x-4 a t  all A. 
However, for very large h (e.g. plane wake) the proportionality constants are 
quite different than for low A. Figure 7 shows for comparison the decay of the 
plane wake calculated from the measured data of Schlichting. 

Discussion 
For both plane and axisymmetric jets immersed in constant-velocity streams it 
appears from experimental data that the mean velocity field can be calculated 
from free-jet data (by assuming the flow to be approximately self-preserving) as 
long as the local velocity ratio h is less than a value of one or two. This result has 
bearing on the calculations described subsequently which show that for the effect 
of confining walls to be significant h must be well below unity until the jet spreads 
to the walls. After this point, of course, self-preservation of the velocity distribu- 
tion can no longer be even approximately valid. 

The method described in the foregoing assumes only that the velocity and 
shear distribution are approximately self-preserving over the major part of the 
flow field. While this assumption is shown by detailed measurements of the free 
jet to be only approximate, it  none the less provides a means of predicting the 
mean velocity field to quite good accuracy, under the restriction already dis- 
cussed. The use of this assumption makes the method independent of the usual 
phenomenological theories of shear flow. 

The location of the virtual origin of the jet in any actual flow will depend on 
the velocity distribution across the nozzle or slot exit plane. Figures 5-8 apply 
to jets of nearly uniform nozzle exit plane velocity and Reynolds numbers 
(based on nozzle diameter) exceeding at least lo4 (Ricou & Spalding 1961). 
Under these conditions it appears that the virtual origin can be considered to be 
located in the nozzle exit plane. If, a t  the other extreme, the jet velocity distribu- 
tion was as shown in figure 3 at the exit plane, the virtual origin would have to 
be shifted about eight diameters upstream. 

The theoretical curves on figures 5-8 have all been calculated with the use of 
shear integrals derived from free-jet data, viz. = 0.0255 (axisymmetric), 
$o = 0.0144 (two-dimensional). When more accurate data become available i t  
may be possible to deduce the effective variation of this shear integral with h 
(supposing the velocity integrals to be still constant). 

4. Axisymmetric jets in constant diameter ducts 
The subject of this part of the paper is the behaviour of incompressible jet flow 

in ducts of constant cross-sectional area. Equations are developed for predicting 
axisymmetric flow only, Theoretical results are compared with the measurements 
of Hembold et al. (1954) and Becker et al. (1962). 

If the flow field is sufficiently large the potential core region can again be 
replaced conceptually by a virtual source located approximately in the nozzle 
exit plane. Downstream of this source three distinct regions of flow must be 
identified, as has been done in the Introduction. 
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4.1. Potential outer flow 
As a jet spreads in a constant area duct i t  reduces the cross-sectional area of the 
free stream and continuously entrains free-stream fluid. Since the relative loss of 
fluid from the free stream is typically greater than the relative loss of flow area, 
the free stream decelerates and the term in equation (4) containing the velocity 
gradient d Uo/dx is no longer negligible. 

Integrating equation (4) for the axisymmetric jet it  becomes 

or, since h = Uo/q., 

in which the constants $ and h are defined as under equation (6). 
If wall friction is negligible (an assumption to be justified subsequently) and 

the pressure P = p + p a  is approximately uniform across any one transverse 
plane then the axial pressure gradient will be related to momentum changes by 

in which R is the radius of the duct. If a radially uniform external stream exists 
(i.e. the jet has not yet spread to the wall) the velocity within the jet may be 

where as before 9 = y/6 and the pressure gradient is given by 

du ,  - u-. 
p a x  O ax 
1 dP - 

Substituting these expressions in the momentum equation it becomes 

O = rR2p - d(iUE)/dx + R-2 a( Ug R2)/dx + 2R-' & PU32h$,, + $61) . [ a (  I1 
If the duct radius R is constant this expression may be integrated with the result 

&M = pu;[!2h2 + 2(8/R)2 (2h$,i + $51)1, (12) 

in which &M is the average sum of momentum and pressure forces per unit area, 
constant since the cross-sectional area of the duct is considered uniform and wall 
shear stresses are neglected. Equation (12) is only valid for h 2 0. For h < 0 
a different expression is required for the sum of the pressure and momentum 
forces since the pressure is no longer simply related to the velocity outside 
the jet. 

The total mass flow per unit area through the duct may be written 

m = pUj[h+ 2$,1(6/R)2]. (13) 
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The two constants m and M may be combined to form an important parameter 
which (for h > 0) is 

It will now be shown that the behaviour of jets confined in constant-area ducts 
can be expressed as a function of only two independent variables, i.e. m/(Mp)' 
and x/D,  in which D is the duct diameter. From equation (13) it may be seen that 

Then, by reason of this relationship, equation (1 1) can be expressed in the form 

q l ( 4  6/R) d W x  + qz(h, W) W d x  = $l/& 

in which the coefficients q1 and qz depend only on the variables h and (6/R). 
Now equation (14) may, in principle, be employed to eliminate (6/R) from the 
above relationship with the result 

m/(Mp)41 dhldx = $1/6. 

Thus, the assumption of self-preservation leads to the dependence of both h and 
6/D on x/D and m/(Mp))  only. From equation (12) it then becomes clear that 
the dimensionless velocities q / ( M / p ) t  and Uo/(2M/p)h can also be expressed as 
functions of these two independent variables. 

Evaluated in the exit plane of the nozzle for uniform jet and secondary 

ho + ( d / W  
streams m -- 

(Mp),  - (hi + 2( 1 + 2h0) (d/D)2F' 

in which d is the nozzle diameter, D the duct diameter and A, the initial velocity 
ratio. The numerical value of m/(Hp) )  should normally lie between zero and one. 
A value of zero signifies no net mass flow in the pipe, i.e. a jet issuing into a pipe 
whose downstream end is closed. Values of m/(Mp)* approaching unity signify 
that the ratio d/D is negligible so that influence of the walls is insignificant. The 
dimensionless group m/(Mp)* as defined by equation (14) is uniquely related to 
equivalent variables proposed by Curtet & Craya (1955), and Spalding. 

In  order to calculate the development of the jet flow, equation (ll), the 
momentum integral equations, and the continuity equation may together be 
expressed as 

in which the primes signify differentiation with respect to x /D and the coefficients 
a, are given by 

a0 = Zh$ii + $21 + $317 
a3 = 3h-k 2$51/$41, 

a1 = ;$ll? 

a4 = 2h? 
012 = 3h$11 f2&, 

a5 = 2h+ 2$51/$419 

a6 = A +  8$41(6/0)', a7 = A, ag = 16$41(6/D)2. 
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The values of the integrals @l, &l, . . . , q551 have been derived in Q 3 of this paper 
from free-jet data, from which it is also concluded that a reasonable value of S/b 
is 1-44. Using these numerical values, calculations based on (15) and using the 
Runge-Kutta-Merson procedure have been performed on a digital computer and 
are presented in figures 9-13. Discussion of these results and comparison with 
experimental data will follow a description of methods of dealing with the other 
two regions of the jet flow field. 

0 1 2 3 4 

XlD 

FIGURE 9. hisymmetric jet in a constant-diameter tube. 

4.2. Recirculation region 

In this region of partially reversed flow (zone C in figure 1) it is no longer possible 
to consider the pressure gradient and the free-stream velocity to obey 

However, experiments show that in this recirculation region it is approximately 
true that the static pressure is constant through the region. Furthermore, the 
jet shape is approximately retained so that with appropriate modification the 
foregoing equations may also be used to predict the jet behaviour in the reoircula- 
tion region. Considering the flow external to the jet uniform even when j t  is 
reversing is of course a considerable approximation. 

- p-' dP/dx = u, dU,/dx. 

4.3. Wall-jet interaction 

When the jet has spread to the wall it begins to undergo considerable changes in 
its velocity and shear distributions so that the preceding equations are no longer 
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useful. Further the 'free-stream' has disappeared so the static pressure in the 
duct can no longer be linked to the velocity C& even in the absence of recirculation. 

According to Townsend, the assumption that the eddy viscosity defined by 

1 oc 

10 

-k 

ig 
2 

1 

0.1 

$ 0.8 

1 .o 
X P  

10 

FIGURE 10. Axisymmet>ric jet flow in a constant-area duct. 

is uniform across the width of the shear layer leads to remarkably accurate pre- 
dictions of the mean velocity field of self-preserving free turbulent shear flows. 
For the free axisymmetric jet, Hinze (1959) has calculated the radial distribution 
of eddy viscosity and it appears that the mean value decreases somewhat near 
the edge of the jet. However, if the local eddy viscosity were divided by the local 
intermittency factor the result would be fairly uniform indeed across the shear 
layer. Townsend suggests there are no physical reasons for justifying this result, 
but it is notable because it leads to useful simplifications. 

I2  Fluid Mech. 22 
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X l D  

FIGURE 11. Axisymmetric jet flow in a constant-area duct; centre-line velocity. 

"ID 
FIGURE 12. Axisymmetric jet flow in a constant-diameter tube; velocity near wall. 
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In  the following calculation i t  will be assumed that the effective eddy viscosity 
distribution in this region of developing flow is given by 

vT = const. ?JRg,(r), (16) 

in which the function g ,  roughly approximates the result of Hinze’s calculation, 
i.e. 

and 

where 

0.4 

0.3 

0.2 

0.1 

z 
af 
. 

0 

I 
R - - 0.1 

- 0.2 

-- 0.3 

- 0.4 

- 0.5 

g1 = 1 (0 < 7 < 0*28), 

g1 = 1.191 -0.6847, 0.28 < 7 < 1, 

7 = YIR. 

0 1 2  3 4 5 6 7 8 9 10 

X l D  

FIGURE 13. Axisymmetric jet flow in a constant-diameter tube; pressure. 

The constant in equation (16) is evaluated from free-jet data. The support that 
is offered for the assumption is simply that it provides a reasonably good predic- 
tion of the mean velocity field, as will be shown. 

In  order to allow for the first-order effects of a change in velocity distribution 
in this zone of the flow the velocity may be set equal to 

= u, + v,[f(r) + Eg(7)17 7 = YIR? (17) 

in which U, is the velocity near the wall (the wall boundary layer is ignored), q. is 
the difference between U, and the maximum velocity and 6 is a function of x only. 

12-2 
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If the function f(r) is arbitrarily selected as the one which was used for the 
preceding zones, then k equals zero when the jet ‘touches’ the wall and is a 
measure of the cha.nge in shape of the velocity profile thereafter. If the function 
g(7) is only required to satisfy the boundary conditions 

g(0)  = g’(0) = 0; g(1) = g’(1) = 0) 

then a simple function may be used, e.g. 

d r )  = r2(1 -rY* 
Within limits the choice of the function g ( r )  will not be of great importance. 

In  the preceding calculations three variables V,, A, and 6 were determined by 
the use of continuity and momentum integral equations and by means of the 
moment-of-momentum integral equation. For the present case four unknowns 
may be identified: L$, A, and P. To form the necessary four equations it is 
possible this time to take in addition to the continuity equation three successive 
integrals of the momentum equation. This may be done by multiplying equa- 
tion (1) by yj wherej = 1 , 2 , 3  and integrating with respect to y. Using equations 
(1  6) and (1  7) the results may be expressed in the form 

in which the prime signifies differentiation with respect to x /D and P is the 
dimensionless variable 2Po/1M and q. is the variable q/ (M/p)&.  In general the 
coefficient matrix elements P have the form 

Pn = a,,AA2 + a2,A + a3,h2 + adnA5+ aBn (2 +a,,, 

in which the coefficients a,,, . . . , a,, depend only on various integrals across the 
shear layer of the velocity and shear distribution functionsf(y), g ( v ) ,  and gl(r). 
From (18) the derivatives q, A‘, 6‘) and p‘ were evaluated. Calculations were 
performed on a digital computer again using the Runge-Kutta-Merson integra- 
tion procedure. 

4.4. Results of calculations 

Figure 9 shows the spreading of axisymmetric jets in tubes. As may be seen from 
figure 3 the ‘edge’ of the jet can only be defined arbitrarily. Nevertheless, it is 
necessary to make such a definition to decide when the jet has attached to the 
wall. It may be seen that for m/(Mp)& above 0.6 the jet spreading becomes 
decidedly non-linear which is not in accord with the proportionality (5 ) .  Thus 
the assumption of approximate self-preservation of the flow prior to jet attach- 
ment can only be valid below a limiting value of m/(Np)&. Figure 10 shows the 
axial variation of jet velocity q. in the same zone. For moderate values of 
m/(Mp)* it  too satisfies (5). Figure 11 shows the decay of centre-line velocity in 
the region after the jet has attached to the wall. It may be noted that the decay 
rate is typically very much higher for low values of m/(Mp)*. 
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The free-stream velocity U, is given by figure 12. For m/(Mp): < 0.45 it is 
possible to have a region of recirculation. Figure 13 can only be approximate in 
the region of recirculation due to the simplifications employed in the calcula- 
tions. Nevertheless, i t  will be shown to be supported to some extent by experi- 
mental data. After the jet touches the wall, pressure gradients are rapidly 
established even though the flow near the wall may still be recirculating. This is 
shown by figure 13. For m/(Mp): < 0.4 most of the overall pressure rise has 

Ylb 
(4 

FIGURE 14. Axisymmetric jet flow in a constant-diameter tube ; typical velocity distribution. 
(a) m(Mp): = 0.2; ( b )  n~/(ll.fp)& = 0.8. 

taken place before the wall flow has been returned to the forward direction. It 
may be shown that the pressure of the stream after mixing is completed is 
given by ( p  - P,)/H = 4 - m2/Mp. 

Figure 14 shows typical velocity profiles; the distribution does not alter 
radically even after the jet has touched the wall, confirming that within certain 
limits the choice of the function g ( 7 )  is not of great importance. From figures 10 
and 12 it may be seen that in the region before the jet attaches h is always less 
than unity for na/(Mp)* < 0.8. Thus according to the conclusion of § 3 it  might 
be expected that these results would be reasonable in such a range. 

4.5. Comparison with experimenta,l data 

The foregoing results are compared in figures 15 and 16 with experimental 
data most of which has been obtained by Hembold et al. (1954). They measured 
the wall pressure distribution along a 6-inch diameter tube with air jet and 
secondary streams and maximum velocities of the order of a few hundred 
ft./sec. The ratio of their nozzle and tube diameters was 0.10. The data points for 
nz/(Mp)& = 0 were obtained by the author using a closed-end pipe about 2in. 
in diameter and 24in. long, with air injected through a concentric nozzle. The 
ratio of nozzle-to-tube diameter was 0-125 for that test. 

In  general the calculated and measured distributions are in quite good agree- 
ment so that equation (16) seems to be a satisfactory approximation. The greatest 
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discrepancies are for low values of m/(Mp)* suggesting that the assumptions 
which have been made herein regarding the recirculation zone are inadequate. 
Some improvement in the solution might be made by arbitrarily altering the 
definition of the jet ‘edge’ (figure 3) but what seems most needed is a more 
detailed experimental study of the regions of recirculation and attachment. 

X l D  

FIGURE 17. Experimental and theoretical variations in jet width. m/(Mp)& (Becker) : 
8, 0.023; x , 0.090; m, 0.128; ‘3, 0.237; +, 0.430; 0, 0.653; -, theoretical. 

The wall shear stress only exerts an appreciable effect on the flow at high 
values of m/(Mp)& as is shown in figures 15 and 16 from the results of calculations 
using a constant value of the shear stress coefficient C, defined by 

Cf = 7 , / * p q ,  

in which 7, is the wall shear stress. The reason the wall shear stress affects the 
pressure rise so little is that the latter is only significant when A, is so small that 
the wall stress r,, is small compared to other terms in the axiaI momentum 
integral equation. No account was taken of wall boundary-layer displacement 
thickness which would tend to reduce the pressure recovery. The effect appears 
small. 

Figure 17 shows Becker’s measurements of jet width, which are in general 
agreement with the present calculations except for one value of m/(Mp)*. 
Figure 18 indicates Becker’s measurements of the free-stream velocity U,. 
Measurements in the recirculation region may be difficult due to unsteadiness of 
the flow, but the measurements are in reasonable agreement with the calculations 
except a t  high values of m/(Mp)*.  Figure 19 shows the data of Landis & Shapiro 
replotted in co-ordinates which take into account the influence of the duct 
walls. 
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I 

FIGURE 18. Experimental and theoretical variations in velocity near the wall. m/(Mp)f  
(Becker): 8, 0.023; x ,  0.090; m, 0.128; 0, 0.237; 0, 0.340; +, 0.403; v, 0.574; 
0. 0-653 ; -, theoretical. 

0.1 1 

xlD 

10 )O 

FIGURE 19. Experimental and theoretical variations in jet velocity. m/(Mp)*  (Landis- 
Shapiro): x ,  0.977; 0, 0.965; m, 0.888; +, 0.87; -, theoretical; -.- , 6/R = 1. 



Turbulent j e t s  in ducted streams 185 

5. Conclusions 
1. The use of self-preservation hypothesis permits the mean velocity field of 

jets surrounded by constant-velocity streams to be calculated from free-jet data, 
as long as the ratio of the external velocity to the maximum jet relative velocity 
does not exceed one or two. In  this way the jet velocity ratio U/U, and the 
thickness ratio 618 can be shown to depend only on x/O. 

2 .  In  the absence of recirculation a reasonable prediction of the behaviour of 
turbulent confined jets can be made with the following assumptions: 

(a)  approximate self-preservation of the flow up to the point a t  which the 
jet attaches to the wall; 

( 6 )  negligible influence of wall boundary layers; 
( c )  potential outer flow until the jet attaches (except in the recirculation 

(d )  constant pressure in the recirculation region; 
( e )  use of a similar eddy viscosity distribution and a two-parameter velocity 

( f )  evaluation of all shear integrals from free-jet data. 
3. Experimental studies of velocity and shear distributions in the zones of 

jet recirculation and in the vicinity of jet attachment to the wall are desirable in 
order that prediction of these confined jet flows can be improved. 

region) ; 

distribution after the jet touches the wall; 
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Appendix. Two-dimensional (plane) jet in a constant-velocity stream 
In  the same way as for the axisymmetric jet, equation (7) may be used to 

eliminate 6 from equation (6) for the two-dimensional case (i = 0). The resulting 
expression may be integrated and expressed in the form 

+ (&I2 (2b-b) $40 $10 A-11 +Co, (A 1) 

in which = $50/$40, 

and Co is the constant of integration. To evaluate the functions $lo, . . . , it  
would be best to use accurate data on the velocity profile of the two-dimensional 
free jet. However, if for convenience a cosine curve is used to approximate the 
velocity distribution, the appropriate integrals are 

$,, = 4- 1/+, $hZO = &- 11772, $30 = l /+ ,  $40 = g, = $. 
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The shear integral lcro may, as before, be deduced from equations (3) and (6): 

‘$0 = ($30 - $20) (d8/dx)A=0.  

From Reichhardt’s data the spreading of the free jet is given by 

db/dx = 0.23. 

For the cosine velocity distribution d8ldx = db/dx. Thus using the given values 

Of $20, $30 and (db/dx)h=O = 0.0144. 

The constant of integration is again determined by the condition that at  the 
virtual origin x = 0 and h = 0. 

With these numerical values the two-dimensional jet behaviour may be 
determined from 

x p  = 5.14A2- 5.97R- 3.341n.A-o46oA-l+ 1.64, (A 2) 

in which A = h + 0.75 

and 8 may be determined from conditions a t  the nozzle exit plane 

e/a = (A,+ i)/q, 
in which d is the width of slot from which the jet issues and ho is the initial velocity 
ratio. 
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